A 3 INTEGERS 11 ( 2011 ) COMBINATORIAL INTERPRETATIONS OF CONVOLUTIONS OF THE CATALAN NUMBERS Steven

نویسنده

  • Steven J. Tedford
چکیده

We reintroduce an interpretation of the kth-fold self convolution of the Catalan numbers by showing that they count the number of words in symbols X and Y , where the total number of Y ’s is k more than the total number of X’s, and at no time are there more Y ’s than k plus the number of X’s. Using this, we exhibit some of the wide variety of combinatorial interpretations of the kth-fold self convolution of the Catalan numbers. Finally, we show how these numbers appear as the last column in a truncated Pascal’s triangle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMBINATORIAL INTERPRETATION OF THE NUMBERS 6(2n)!/n!(n + 2)!

It is well known that the numbers (2m)! (2n)!/m!n! (m+n)! are integers, but in general there is no known combinatorial interpretation for them. When m = 0 these numbers are the middle binomial coefficients ( 2n n ) , and when m = 1 they are twice the Catalan numbers. In this paper, we give combinatorial interpretations for these numbers when m = 2 or 3.

متن کامل

Multivariate Fuss-Catalan numbers

are integers that appear in many combinatorial problems. These numbers first arose in the work of Catalan as the number of triangulations of a polygon by mean of nonintersecting diagonals. Stanley [13, 14] maintains a dynamic list of exercises related to Catalan numbers, including (at this date) 127 combinatorial interpretations. Closely related to Catalan numbers are ballot numbers. Their name...

متن کامل

Super Ballot Numbers

The Catalan numbers C n = (2n)!/n! (n + 1)! are are well-known integers that arise in many combinatorial problems. The numbers 6(2n)!/n! (n + 2)!, 60(2n)!/n! (n + 3)!, and more generally (2r + 1)!/r! · (2n)!/n! (n + r + 1)! are also integers for all n. We study the properties of these numbers and of some analogous numbers that generalize the ballot numbers, which we call super ballot numbers.

متن کامل

The Catalan numbers

E. Catalan stated in 1874 that the numbers (2m)! (2n)!/m! n! (m+n)! are integers. When m = 0 these numbers are the middle binomial coefficients ( 2n n ) . When m = 1 they are twice the Catalan numbers. In this paper, we give a combinatorial interpretation for these numbers when m = 2.

متن کامل

Elements of the sets enumerated by super-Catalan numbers

As we know several people tried to get many structures for fine numbers (see [31, Sequence A000957]), while others on Catalan numbers (see [31, Sequence A000108]). Stanley [34,35] gave more than 130 Catalan structures while Deutsch and Shapiro [11] also discovered many settings for the Fine numbers. The structures for Fine numbers and Catalan numbers are intimately related from the list of Fine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011